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black hole 
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CB3 9EW, UK 

Received 8 December 1981 

Abstract. There have been several investigations on the influence of a gravitational field 
on charged test particles. This note demonstrates a very concise method to determine 
the force on a charged particle on the B = 0 axis of a black hole. The relevance of this 
result to the emission of charged particles by mini black holes is discussed. 

The gravitational field has been known to influence the electrostatic interaction of a 
charged particle in a way that the particle experiences a finite self-force. There have 
been quite a few approaches to demonstrate this effect (DeWitt and DeWitt 1969, 
Berends and Gastmans 1978, MacGruder 1978, Vilenkin 1979) most of which employ 
a weak field approximation to obtain an expression for a repulsive force on the particle. 
Smith and Will (1980) have obtained an exact expression for this force in the case 
of a Schwarzschild metric by computing the stress-energy tensor. Their calculation 
involves transforming into isotropic and freely falling coordinates resulting in a 
cumbersome algebra. The purpose of this note is to present an elegant method which 
confirms earlier results and also lends itself to a straightforward generalisation to more 
complicated metrics of the Kerr-Newman background. These cases would definitely 
be very difficult, if not impossible, to work out using the techniques in Smith and Will 
(1980). 

We start with the Schwarzschild metric 

ds2=-(1-2M/r)dt2+(1-2M/r)-1dr2+r2df12 (1) 
for which the potential due to a charge, e, at rest on the axis e = 0 at r = r' is given 
by (Gibbons, unpublished) 

(2) 
e ( r - M ) ( r ' - - M ) - M 2  cos e eM 

rr [ ( r - M ) 2 + ( r ' - M ) 2 - 2 ( r - M ) ( r ' - M )  cos e-M2sin2 rr 
A o = ,  +l. 

The first part of this expression was determined by Copson (1928). This solution has 
a source of strength -eM/r' at r = 0 in addition to the source at r = r'. In order to 
construct a potential with just one source at r', Linet (1976) added the second term 
in equation (2) as the suitable monopole field to obtain an expression which is 
non-singular everywhere except at r'. The work done to bring up a charge de to a 
point r on the axis is therefore 

d W = e de[ r( 1 
1 -7-y) +E]. r - r'l (3) 
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In the limit r + r‘, the total energy required to assemble a charge e is 

where S = ( 1  - 2M/r)-’l2(r - r’). The first term is the red-shifted self-energy of a 
charge of size /SI and can be absorbed into the bare mass of the particle. The second 
term, which depends on the sign of 8, averages out to zero for a spherically symmetric 
assembly of the charge. The third term, coming directly from the Linet image 
correction, leads to the inverse cube force we sought for. This force may therefore 
be interpreted as being due to the image charge induced inside the hole. However, 
there is one essential difference: the force in our case is repulsive and not attractive. 

The same computation is easy to repeat for a charged particle in the Reissner- 
Nordstrom background. The solution for the potential is (Linet and Ltaute 1976) 

e ( r - M ) ( r ’ - M ) - ( M 2 - Q 2 ) c o s  0 Me 
A o = ~  [ ( r - ~ ) ’ + ( r ’ - ~ ) ’ - 2 ( r - ~ ) ( r ’ - ~ )  cos e - ( M 2 - ~ 2 )  sin2 e] 1 / 2 + 7  ( 5 )  

0 being the charge of the hole. The energy W required to assemble the charge e on 
the axis is thus found to be 

( 6 )  
To find the static solutions for Maxwell’s equations in the Kerr-Newman back- 

ground, one starts by adopting the Kinnersley (1969) tetrad for the metric, for which 
the tetrad vectors have the following ( t ,  r, 8, cp) components: 

1, = (-1, p”/A, 0,  a sin’ e), 
(7)  

m, = [2’/’(r + ia cos e)]-’(+ sin e, 0 ,  p ” ,  i sin o(r’ + u 2 ) ) ,  

where A=r2-2Mr+a2+Q2,  a and Q being the angular momentum and charge 
parameters of the hole, and p’’ = r’ + a’ cos’ 8. The non-vanishing spin coefficients are 

W = m JG + eQ/ r’ + ;Me ‘/r’’. 

17, = (1/2p’’)(-A, p”,  0 ,  Au sin’ e), 

p cot e iap2 sin e - 
C y  = H - p ,  J 2  ’ 

p = - ( r  -ia cos e)-’, p=- -  I T =  
2 J 2  ’ 

- ( r  - M )  
Y = II + PP-. 

2 
iapp sin 8 P’PA 

J2 ’ 2 
II = - 9  

T = -  

This reduces the Newman-Penrose form for Maxwell’s equations 

F”” = 4xJ”, 4o = F,,,l~m ”, 

41 =:F,,,(lllqy +tii”m”), 42 F,,,tii ,nu, 

to 

( 9 )  
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% +y-= fi 2J$.srp-3J,, 
ae p sin e ar 

where 

,y =Ap sin 8, 

From (10) we obtain cD0 = -2a2  + constant, assuming regularity of the field on the axis, 

a0 = p-lx40, a1= P-241, a2 = p-l  sin 6 42. 2 

40 = -242/Ap2; (11) 

thus cb0 and 41 suffice to specify the field. 
Following Teukolsky (1973) and Misra (1977), we may define (J = d 2 / p 2  to give 

with 

We can now obtain the solution to (12) for a charge e on the axis for which 
J‘ = ( e / 2 ~ p ” ) s ( r  - r’)S(cos 8 - 1). To do this we define (J = ag/aO and introduce a new 
radial coordinate r = R +M + [ M 2  - ( a 2  + Q2)]/4R to give 

(14) 
$5 (M2-a’-Q2)/2R -+--(sin ag 1 a 0%) =o.  
aR 1-(M2-a’-Q2)/4R2 aR s m e  ae R 7- 

The solution to this equation is obtained by direct integration after introducing a new 
variable 

x = [R + R2(r’) - 2R (r‘)R cos @![R - &U2 - a - Q2)]-’. 

The result is 

‘ = [ ( r  -MI’ + (r’-M)2 - 2(r -M)(r’ - M I  cos e - (M’ - a 2  - Q’) sin2 e ]  
(15) 

The constants c1 and c2 can be obtained by inkgrating the solution across the source. 
From equation (12), we obtain c1 = -(e/2J2)(rf+ia)-’, c2 being arbitrary. Thus 
the solution is 

[ = -  - 

c 1 [ ( ~ - M ) ( r f - M ) - ( M 2 - a 2 - Q 2 )  cos e ]  
1/2  + c2. 

e 
2J2( r ’+ia)  

[(r -M)’+ (r’-M)’-2(r -M)(r ’ -M)  cos - ( M 2  - a’- Q 2 )  sin2 
(r-M)(r’-M) - ( M 2 -  a’- Q2) cos e 

X + c2 

--[e/2J2(rf+ia)lx +cz. (16) 
This gives 

42 = -[ep2/2JZ(r’+ia)lax/ae. 

The Maxwell equations (106) and (10d) give 
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Integrating with respect to 8 gives 

where 

Y 2  = ( r  - M ) 2 +  ( r ’ - M ) 2 - 2 ( r  - M ) ( r ’ - M )  cos 8 - ( M 2 -  a 2  - Q 2 )  sin’ 8. 

The function f ( r )  is found by examining the large-distance behaviour of the field-or 
equivalently by appealing to Gauss’s theorem. To this effect we invert equation (9), 
i.e. 

(19) 

to give F,, = -2 Re q51 at a point on the Z axis, i.e. 8 = 0. Requiring the far-away 
field to correspond to a charge at r = r‘ and the black hole charge Q inside the horizon 
gives, from equation (18), 

FFY = 2[41(n[,lV1+ m[,fi,]) + 4 2 l w ~ 1  + 4ofi[,nV1+ cc 

f ( r ) =  eM/2(rf+ia)+4Q. (20) 

The force on the charge e would be given by eF,, = limr,,.(-2e Re d1). As before, 
we average out terms depending on the sign of ( r  - r ’ )  to zero, giving 

( r ’ - M )  r ’ [ ( r ‘ - M ) 2 - ( M 2 - a 2 - Q 2 ) 1  + e’ 
(r” + a2)’ 

r’ 
( r ” + a  ) 

Qe (rI2 - a 2 ,  

( r ’ 2 + a 2 ) 2  * 
+ 2 e 2 ~ +  

e2/ lr  - r’l can again be absorbed in the bare mass of the particle. The second term is 
the repulsive force we were looking for and the third term is just the electrostatic 
force between the charges Q of the black hole and e of the particle. 

The expression for the force in equation (21) modifies the effective potential used 
to analyse the black hole emission process by terms proportional to e’. This would 
not substantially affect the emission of charged particles from highly charged holes, 
but it might affect the emission from holes with a small charge Q = Z e  (say). For a 
non-rotating uncharged hole, the repulsion can overcome gravity at distances r = e2/m, 
i.e. the classical electron radius. This is outside the horizon for small black holes 
( M  < 10l6 g). The chemical potential of the hole is raised (for both signs of the charge) 
by a value e2M/r? .  All the resulting corrections could be included in the calculation 
of the thermal flux by computing the emission rates using the appropriate wave 
equations coupled to an effective electromagnetic field 

(22) 

AEff is not a solution to Maxwell’s equations, but it is divergence free. The absorption 
coefficients could now be computed numerically following Page (1977). For a 
Schwarz-schild hole, the chemical potential is e2/8Mm times the rest mass of the 
particle. Thus the emission of charged particles would be suppressed relative to the 
emission of neutral particles by this effect. If Z = 1, the Coulomb potential is between 
four and two times smaller than the Linet potential, depending on how highly charged 
the hole is. If the hole is neutral the ratios of rest mass to thermal energy and Linet 
potential energy to thermal energy are 8rMm and r e 2  respectively. The energy 
required to overcome the Linet potential is always small compared with thermal 

AEff = Q / r  + e(2Mr - Q 2 ] / 2 r 3 .  



Self-force on an electron near a charged black hole 1819 

energies. This indicates that the suppression is never very effective. In any case there 
are other effects which enter at this order in the fine structure constant (Page 1977). 
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